1393 DNA Shared Matches

Ancestry.com gave my husband a list of his 50 top matches of DNA from their database. For each match they found, I could click on a button that would reveal any matches that my husband shared with that match. Some of his matches didn’t share any other match with him. Sometimes a couple of their shared matches didn’t make his list of top 50 matches. I made a table of his shared matches. It was pretty big so I made a smaller table that only includes people in his top 50 who have at least one shared match with him AND a second or third cousin.

I purposely cut off people’s names for privacy reasons, but anyone who shares DNA with my husband and the others in the table should still be able to figure out who’s who.

Ancestry explains that a 2nd cousin could actually be a great aunt or a 1st cousin twice removed. The 2nd cousin would have 5 to 6 degrees of separation from my husband, a 3rd cousin would have 6 to 10 degrees of separation, and a 4th cousin would have 6 to 12 degrees of separation, but most likely 10.

DNA does NOT “share and share alike”. Every person gets half of his DNA from his mother and a half from his father, but the half given from each parent can vary from child to child. I noticed that some of my husband’s matches might be siblings with the same surname, but their shared matches were not always the same. Thus, it can definitely be worth it to have more than one family member take the DNA test.

I made this chart to see if it could help me determine who might be my husband’s maternal cousins versus his paternal cousins. I don’t think I completely succeeded. The same DNA might not be the DNA in shared matches. For example, ab, bc, and ac each share a letter of the alphabet with each other, but it is not the same letter of the alphabet. Since both sides of my husband’s family had many siblings and cousins and settled in the Cleveland, Ohio area 100 years ago or more, it seems possible that some of his relatives listed on the chart are actually related to BOTH his father and his mother, but more distantly than 4th cousin on either side.

A positive from making the chart is that I have verified that all the people with x’s in the lower right corner are closely related to each other. The chart says they are also all related to Benjam, but none of them have any idea how.

Like so much of genealogy research, one answer will produce more questions. It becomes such a fascinating puzzle!

Since this is my 1393rd post, I’ll write a little bit about that number:

  • 1393 is a composite number.
  • Prime factorization: 1393 = 7 × 199
  • 1393 has no exponents greater than 1 in its prime factorization, so √1393 cannot be simplified.
  • The exponents in the prime factorization are 1, and 1. Adding one to each exponent and multiplying we get (1 + 1)(1 + 1) = 2 × 2 = 4. Therefore 1393 has exactly 4 factors.
  • The factors of 1393 are outlined with their factor pair partners in the graphic below.

Since both of its factor pairs have odd numbers in it, I know that 1393 can be written as the difference of two squares in two ways:
697² – 696² = 1393
103² – 96² = 1393

 

Advertisements

DNA and Big Brother

When my husband was a little baby, his dad filled out the genealogy section in his baby book in his beautiful, distinct handwriting:

Even though most of the pages are blank, my husband has always cherished that book, and it has been extremely helpful in finding many other of his ancestors.

From additional research, we have learned that my husband’s grandfather, Frank Kovach, was born Kovács Ferenc in Szürte, Ung County, Hungary. That little town has had several border changes and is now part of Ukraine, but still only about eight miles from the Hungarian border. You can see a map showing the location of Szürte in a post I wrote a couple of years ago. Ferenc (Frank) was born 13 June 1883 to Kovács Péter and Péntek Mária – that’s their names in Hungarian name order. The baby book gives their names in English name order. My husband remembers his grandfather, Frank, vividly. He died 10 June 1968 in Ontario, San Bernardino, California.

Many years ago when I tried to figure out Frank’s place of birth, I found three other people whose parents had the same names as his parents. Could they be Frank’s siblings? Could the two boys be his big brothers? (You will need to be logged into FamilySearch.org and Ancestry.com to see most of the links I’ve included in this post.)

  1. Julia Kovach (Kovács Juliánna) was born 12 Apr 1882 in Hungary (both of her parents were born in Ung County, Hungary!). She died 15 Jun 1940 in Cleveland, Ohio. Maybe Frank was also born in Ung County, I excitedly thought! Several years later I found a death record for one of Frank’s sons that gave the specific town in Ung county where Frank was born. Still years after that I found Frank’s petition for naturalization also confirming it.
  2. Steven Kovach (Kovács István) was born about 1874 in Hungary. He married Julia Csengeri on 22 Sept 1901 in New York.

    He MAY have died seventeen years later on 11 Dec 1918 in Union, Washington, Pennsylvania, but buried in Cleveland, Ohio.  The father on that death certificate was Pete Kovacs and the mother was Mary Pantik. The certificate says he is married, but there was no place to write the wife’s name on it. The informant was Steve Kovach, which just happens to be Julia Kovach’s husband’s name, so her husband might have actually been the informant. Julia and Steve lived in Cleveland, and the deceased, Steve, was buried in Cleveland even though he died in Pennsylvania.
  3. John Kovacs (Kovács János) was born 23 Jan 1870 in Hungary. He died 29 Oct 1943 in Cleveland. To fully appreciate the information for John, we need to look at his and his wife’s death certificates side by side.

Notice that the address for both John and Veronica is 9012 Cumberland, so that helps to establish that they were husband and wife even though the spellings of their last names are not exactly the same. This is important since there were MANY men named John Kovach in Cleveland. The couple’s shared tombstone confirms the dates given above. On Veronica’s death certificate, her father is listed as John Daniels and the informant is Dale Kovats. Further research establishes that Dale is John and Veronica’s son, and the 1940 census shows Dale and his wife, Rose at the bottom of the page, and their daughter and some of Rose’s relatives on the top of the next page. Dale is the key to this puzzle because Dale has a descendant who is a 3rd to 4th cousin DNA match to my husband! That means that John Kovacs is indeed Frank’s big brother, and I am in tears as I am finally able to positively make that statement.

Ancestry.com explains “Our analysis of your DNA predicts that this person you match with is probably your third cousin. The exact relationship however could vary. It could be a second cousin once removed, or perhaps a fourth cousin. While there may be some statistical variation in our prediction, it’s likely to be a third cousin type of relationship—which are separated by eight degrees or eight people. However, the relationship could range from six to ten degrees of separation.” (bold print added)

My husband, Steven, and this DNA match are separated by seven degrees.

Was big brother John also born in Szürte? It seems likely, but he may have also been born about 3 miles away in Kholmetz where a 4th-6th cousin DNA shared match traces her ancestry. If only I could get into the Szürte Reformed Church records and Kholmetz records to look for a Kovács János (John Kovacs) born on 23 Jan 1870 as well as the records for the others and certainly a few more siblings as well!

 

1112 The Children of Betkó Mátyás

 

It was my privilege to go to the archives at Timișoara, Romania last week and look at the Reformed Hungarian Church records from Igazfalva and photograph some of them.  I would not have been able to write even one word of this post had I not seen those records and learned that the members of the Betkó family were Lutherans who had previously lived in Békéscsaba. I am grateful to the archive for allowing me to share the photos I took. The FamilySearch catalog of Békéscsaba Lutheran records helped me find more information about this family. It contains christening (Kereszteltek), marriage (Házasultak), and death (Halottak) records. The christening records from 1832 to 1895 are also indexed in the links labeled névmutatója. Those indexes save a tremendous amount of time especially when more than a thousand children a year were christened.

Békéscsaba is the largest city whose records I’ve searched. Igazfalva was just a little village so I was able to find most of what I wanted there in just a few hours. Igazfalva can be translated as “Truth Village” in English.

Note: for Hungarian name order the surname is first, followed by the given name. The records use that name order, so I’ve used it as well. It may be necessary to register for a free FamilySearch account to look at the records in the given links.

1879-02-21 Betkó Mátyás married Kerepeczki Mária in a city called Békéscsaba in Békés county, Hungary. Both of them listed their ages as 21, so they were both born about 1858. Here is a list of their children that I’ve found mostly in the church records in Békéscsaba.

  1. Their first child was Mária born 1879-05-30.  See Line 423  Unfortunately, Mária was too weak to survive and died two months later on 1879-08-01. See Line 409
  2. 1881-11-17 They had another daughter that they also name Mária. See Line 950
  3. 1883-08-25, a daughter, Ilona. See line 655
  4. About 1887, a son Mátyás
  5. 1889-04-20, a son, György. See line 249

Sadly, Kerepeczki Mária died that same day, 1889-04-20. Line 266 of the record listed her cause of death as Szülésbeni elvérzés, which means she bled excessively after giving birth. She was only 32 years old (born about 1857). Mátyás and Mária had been married 10 years.

Their daughter, Ilona, married Strbán Mihály on 1900-11-27 in Igazfalva. Her marriage record states that she was the daughter of Betkó Mátyás and the late Kerepeczki Mária. She was 17 when she married making her birth about 1883, so she is the daughter listed above. Click on the photo to see it better. (My husband’s grandparents’ marriage is also on this page: Sallai István and Finta Mária married 27 December 1900.)

Although I did not find a christening record for their son, Mátyás,  born about 1887, I placed him on the list of children based on his marriage record below. He was married in Igazfalva on 1911-12-05 to Tóth Rozália. He was 24 years old (born about 1887) and was the son of Betkó Mátyás and Kerepeczki Mária. My husband’s great-grandfather, Sallai Miklós, was a witness of the marriage.

A month and a half after the death of Mária, the widower Mátyás married Kerepeczki Ilona on 1889-06-04. See line 76. Note that the house number for Mátyás on the marriage record is the same as his house number when Mária died.  I have not been able to determine yet if Ilona was any relation to Mária, but they were from the same town and they had the same surname. His age on this marriage record is 30 suggesting he was born about 1859 while Ilona age was 20 suggesting she was born about 1869. Unfortunately, the marriage records from 1853 to 1895 in Békéscsaba do not list even the father’s names for the bride or the groom, so going back to the next generation will be difficult. For example, there were three girls named Kerepeczki Ilona who were born in Békéscsaba in 1869.  Two are on this page and the other one appears on the next page with a twin brother.

Mátyás and Ilona did not have any children christened in Békéscsaba, but they had children born in other places. Were they one of the 69 families from Békés county and surrounding areas in 1893 who formed the village, Igazfalva? I don’t know, but I know that they lived there.

The oldest child of Mátyás and Ilona that I found is Zsófia who was born about 1891 in Medgyesegyháza, wherever that is. I know about her because of her marriage record in Igazfalva. On 1910-12-06, Sallai Imre age 23 (born in Gyoma about 1887) wed Betkó Zsófia, age 19. He was the son of my husband’s great-grandparents, Sallai Miklós and Szalóki Juliánna. She was the daughter of Betkó Mátyás and Kerepecski Ilona.

I went through the records very quickly because we also wanted to visit with my husband’s second cousins later the same day. It is possible I missed some records, perhaps all the records from before 1900. It is also possible the family didn’t move to Igazfalva until then. Here is the 1900-09-04 birth of their daughter, Juliánna. Note that the record states that both Betkó Mátyás and Kerepeczki Ilona are from B.Csaba (Békéscsaba). The next two records also show little Juliánna’s death on 1901-08-26. She was too weak to live more than 3 months 14 days.

1902-10-25 another Juliánna was born. Her death wasn’t listed on her christening record, and I didn’t see one in the death records, but …

1904-07-14 a third Juliánna was born. Her birth and her 1905-04-11 death are listed on the next two records. She was 8 months, 28 days old when she died from kanyaró, the measles.

I did not see the christening record for this fourth Juliánna who died 1910-11-13.  Perhaps I missed the record or perhaps she wasn’t able to be baptized in her short 10-day life. The record states that she had been weak from birth.

Sometime between 1910 and 1916, Kerepeczki Ilona must have died, and I was too rushed to see her death record. Betkó Mátyás married a girl who may have been from another town because I did not see their marriage record. They had one little girl together, but she died before she could be christened.

1917-01-15 Birth of Betkó Mátyás and Filye Erzsébet’s unnamed daughter who died three days later on 1917-01-18. Her death is listed on the next two records.

1930-06-03 Death of Betkó Mátyás, the widower of the late Filye Mária. He was 72 years old. (Born about 1858 in Békéscsaba.)

My husband’s great-grandmother, Szalóki Juliánna, is also listed on that page.

Betkó Mátyás’s death record and his two marriage records suggest that Mátyás was born around 1857, 1858 or 1859. I checked the index of baptisms from 1855 to 1861 in Békéscsaba of children whose surname began with B. There was only one child who was named Betkó Mátyas during that time. Then I found that christening record. 1859-05-28 Line 444, Mátyás born to Betko Mátyás and Szombathy Maria. But as I’ve already demonstrated, not all births make it into the town’s records. I suppose the only way to know for sure that this baptism record belongs to him is to check the civil registration records that were made after 1895 in Hungary, assuming the clerk was given his parents’ information. I suppose I would have to return to the archive in Romania to view those records, but they might have Kerepeczki Ilona’s parents’ names as well.

Nevertheless, his likely parents, Betkó Mátyás and Szombathy Mária, were married 1857-11-10. See Line 97. That’s after 1853, so it will be necessary to figure out who they were, too. He was 21 (born about 1836) and she was 18 (born about 1839).

Mátyás was able to enjoy some grandchildren when he lived in Igazfalva. Here are some records that support that statement:

It is very likely that János born 1900-01-16, the son of Dryenyovszky János and Betkó Mária from B.csaba was one of his grandsons.

As well as their son Mátyás, born 1901-08-02. Sadly, this son died 1906-02-10.

1902-05-05 Ilona, the daughter of Strbán Mihály and Betkó Ilona was definitely Mátyás’s granddaughter.

This next granddaughter was born 1911-07-09. Her name was Sallai Zsófia, the daughter of Sallai Imre and Betkó Zsófia. Her godfather was her uncle, Sallai Antal. Was her godmother, Betkó Judith, also an aunt?

1911-09-03 birth of Strbán János, the son of Strbán Mihály and Betkó Ila (Ilona):

1913-01-12 Sallai Margit, the daughter of Sallai Imre and Betkó Zsófia:

1913-05-11 Strbán Mátyás son of Strbán Mihály and Betkó Ilona. He died 1913-10-31:

1914-01-04 Betkó Róza, daughter of Betkó Mátyás and Tóth Róza:

I was only able to look at christening records that were at least 100 years old, so I don’t know if he knew any other grandchildren than these that I’ve listed.

Since this is my 1112th post, I’ll now write a little bit about the number 1112:

  • 1112 is a composite number.
  • Prime factorization: 1112 = 2 × 2 × 2 × 139, which can be written 1112 = 2³ × 139
  • The exponents in the prime factorization are 3 and 1. Adding one to each and multiplying we get (3 + 1)(1 + 1) = 4 × 2 = 8. Therefore 1112 has exactly 8 factors.
  • Factors of 1112: 1, 2, 4, 8, 139, 278, 556, 1112
  • Factor pairs: 1112 = 1 × 1112, 2 × 556, 4 × 278, or 8 × 139
  • Taking the factor pair with the largest square number factor, we get √1112 = (√4)(√278) = 2√278 ≈ 33.346664

1112 is also the sum of four consecutive prime numbers:
271 + 277 + 281 + 283

 

 

923 Grave Marker

To me graveyards are beautiful places where the dearly departed are laid to rest. Find A Grave and Billiongraves are two genealogical sources that assist individuals in finding grave sites. When my son and I visited graveyards in Hungary and Slovakia a few years ago, we saw many wood and stone grave markers which had been eroded by weather. Some were almost impossible to read. We also suspect some people were too poor when they died to get a headstone of any type. We were very excited when we saw any readable grave markers with our family surnames.

Recently on twitter I saw these paintings of gothic graveyards by M J Forster. I knew immediately I wanted to include them in this post. The paintings are quite stunning.

//platform.twitter.com/widgets.js

Finding departed ancestors can sometimes be difficult, but very rewarding. Finding the factors in today’s puzzle will be very easy:

Print the puzzles or type the solution on this excel file: 12 factors 923-931

Here’s a fun fact about the number 923:

Stetson.edu informs us that 923(923 + 1) = 852,852. Below are two of the MANY possible factor trees for 852,852. The first one includes factor trees for 923 and 924, the second one shows why their product uses digits that repeat itself in order.

  • 923 is a composite number.
  • Prime factorization: 923 = 13 × 71
  • The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 × 2 = 4. Therefore 923 has exactly 4 factors.
  • Factors of 923: 1, 13, 71, 923
  • Factor pairs: 923 = 1 × 923 or 13 × 71
  • 923 has no square factors that allow its square root to be simplified. √923 ≈ 30.380915

861 Interpolating Genealogical Data

Not that long ago, calculators were expensive and bulky. Algebra students did calculations using lots of different tables: trig tables, square root tables, logarithm tables. Students could quickly multiply or divide two decimals by adding or subtracting their logarithms and then taking the antilogarithm of the sum or difference. Each table was only a few pages and was found in the back of the Algebra or Trig textbook. These small tables contained information for thousands of numbers. Interpolating information in the tables was a skill that was taught and learned. What is interpolation? Interpolation is an estimate of a value that falls between two other values. You could say that interpolating means the same thing as reading in between the lines.

People who research their genealogy interpolate; they read between the lines. Doing so helps answer questions like this:

Some people live on this earth only for a few minutes, others for 70 years or more. If a septuagenarian kept a diary of his life, it could consist of hundreds of pages and be a rich resource of how that person lived. Most people don’t journal their lives, however. All that may still exist from a person’s life is a few dates scattered in various record books. Nevertheless, finding those dates and piecing together an ancestor’s life can feel so rewarding. Interpolating some of the data found often helps make that person come alive to the researcher.

As I’ve researched my husband’s family, I’ve a particular couple’s name over and over again. The wife’s maiden name was Bíró, the same as her husband’s surname, and that was the same surname as one of my husband’s great-great grandmothers. I wondered if either one of them was related to her. Over time I found the answer to that question and in the process learned a bit about the two of them, and I’d like to share some of that here.

How Eszter became Bálint Bíró’s second wife:  Bálint’s father, Mihály, died when he was only 9 years old.  From the time that he was 12 years old when his older brother married, Bálint was the oldest son living at home.  Five days before his 31st birthday, Bálint married Erzsébet Szilágyi. A year and a half later, she gave birth to László Bíró on 28 Feb 1859.  He was christened five days later.

At this time, Bálint’s mother, Susánna Nagy Bíró, was 67 years old and suffered from feebleness and weakness.  She died on 9 May 1859 when her brand new grandson was just 2 months old.

The next day Bálint’s wife died from a stroke.  She was only 21 years old! The responsibility of caring for her baby boy AND her feeble mother-in-law must have been all hers. What stress she must have felt! It literally killed her. Bálint went to his mother’s funeral on the 10th and to his wife’s funeral on the 11th of May. I can’t imagine his grief.

It was not at all unusual for a young father in Hungary to remarry soon if his wife died. So after two weeks of mourning and courtship, Bálint found a mother for his infant son.  He and Eszter announced their engagement on 26 June that same year.  When they married on 10 July 1859 in the Reformed Church in Gyoma, Békés, Hungary, he told her and the preacher that he was 10 years older than she was.  He was actually 16 years older.  Here is a list of their children. Several of them lived very short lives.

As you read the dates in that table, do you find yourself interpolating the feelings they might have had? Can you not help but to read in between the lines? How did it feel to take care of small children suffering with scarlet fever and then seeing them succumb to the disease?

There is almost an eleven year gap between the births of their children, Bálint and Benedek. Coincidentally, there was another couple in town having children during this time who had similar names, Benedek Bíró and Eszter Bíró. It was important not to get them confused with our Bálint Bíró and Eszter Bíró. They lived in a completely different houses and were not the same people!

Bálint and Eszter Bíró were well liked in their community, and they took their religious duties very seriously.  On several occasions when a couple in the town were married, Bálint was recorded as one of the two witnesses.  Many parents asked the two of them to be their children’s godparents. In fact, Dániel Finta, who was my husband’s great-grandfather and Bálint’s nephew, requested that Bálint and Eszter be the godparents to his firstborn son, Dániel.

What do their names mean?

Bálint is the Hungarian form of Valentinus which means “healthy or strong”. Bálint would have celebrated his name day each February 14th.

Eszter comes from the Hebrew word for “star”.  Queen Esther is a courageous woman in the Bible who saved thousands of her people. Eszter would have celebrated her name day each May 24th, which was the day after her birthday.

Bíró is the Hungarian word for “judge”.

What I know about Eszter Bíró’s early life:  Eszter was born 23 May 1842 to Benedek Bíró and Mária Ladányi.  Here is a table that contains Eszter and her siblings:

Almost half of Eszter’s ten siblings died before she was born. After losing so many of their precious children, her parents must have cherished her. She was their oldest surviving daughter.

Eszter’s paternal grandmother was Sára Kurutsó. Kurutsó was one of the three noble surnames in Gyoma, Békés, Hungary. Over the next century that surname changed into Krutsó, Krucsó, or Kruchió.  Noble families weren’t necessarily richer than their neighbors, but they had a title! Eszter was probably aware of her grandmother’s status.

Eszter completed her religious confirmation classes on 16 March 1856, a few weeks before her 14th birthday. In Hungary, birthdays were not necessarily celebrated as much as name days were, however.

What I know about Bálint Bíró’s early life: Bálint was born 18 Nov 1826 to Mihály Bíró and Susánna Nagy. Here is a table listing Bálint and his siblings. His sister, Sára Bíró, who was 3½ years his senior, is my husband’s great-great grandmother.

As you can see there are some blank spots in the table because I haven’t found all the information about this family yet.

I have found a little information about the number 861, and since this is my 861st post, I’ll share that here:

From Stetson.edu I learned that 7 + 77 + 777 = 861. Since that is six 7’s, 861 has to be divisible by 3, but not by 9. (It would have to have nine 7’s to be divisible by nine.)

861 is the hypotenuse of a Pythagorean triple: 189-840-861, which is 21 times (9-40-41).

861 is the 41st triangular number because (41 × 42)/2 = 861. That means that 1 + 2 + 3 + . . . + 39 + 40 + 41 = 861.

861 is also the 21st hexagonal number because 2(21²) – 21 = 861. (All hexagonal numbers are also triangular numbers.) That means that 1 + 5  + 9 + 13 + 17 + 21 + 25 + . . . + 73 + 77 + 81 = 861.

  • 861 is a composite number.
  • Prime factorization: 861 = 3 × 7 × 41
  • The exponents in the prime factorization are 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1) = 2 × 2 × 2 = 8. Therefore 861 has exactly 8 factors.
  • Factors of 861: 1, 3, 7, 21, 41, 123, 287, 861
  • Factor pairs: 861 = 1 × 861, 3 × 287, 7 × 123, or 21 × 41
  • 861 has no square factors that allow its square root to be simplified. √861 ≈ 29.3428.

557 Hungarian Genealogy Dictionaries

For many years I’ve used this Hungarian Genealogy Word List from FamilySearch to assist me as I’ve researched my family’s Hungarian genealogy.

This week I found another online Hungarian-English Dictionary. I really like this particular one because for each letter of the alphabet it gives a separate list of diseases beginning with that letter. Knowing the names of diseases in Hungarian is very helpful when looking at death records because often the cause of death is listed on the record.

If you are interested in word lists for some other language, you should be able to find it at FamilySearch.org.

Between those two word lists and an old Hungarian-English dictionary a genealogist friend gave me, I can find the meaning of most words I see. Sometimes I still have to ask my son who speaks Hungarian fluently for assistance, and sometimes the handwriting is so bad that even he can’t read it, but for the most part, we are able to read and understand the records.

FamilySearch included a chart to help people recognize the names of Hungarian months found in the records. When I looked at our family’s records, I sometimes found month names that were not included on their chart, so I expanded the table to include some of these other names, too. The chart is not very difficult to read: the first column is in English, and the last column is in modern Hungarian and looks quite similar to English.

Hungarian Months
——————————————————————————-

557 is the sum of two squares: 557 = 14² + 19²

557 is the hypotenuse of the primitive Pythagorean triple 165-532-557.

  • 557 is a prime number.
  • Prime factorization: 557 is prime.
  • The exponent of prime number 557 is 1. Adding 1 to that exponent we get (1 + 1) = 2. Therefore 557 has exactly 2 factors.
  • Factors of 557: 1, 557
  • Factor pairs: 557 = 1 x 557
  • 557 has no square factors that allow its square root to be simplified. √557 ≈ 23.6008

How do we know that 557 is a prime number? If 557 were not a prime number, then it would be divisible by at least one prime number less than or equal to √557 ≈ 23.6. Since 557 cannot be divided evenly by 2, 3, 5, 7, 11, 13, 17, 19, or 23, we know that 557 is a prime number.

550 Godparents

All of these children are more puzzle pieces in the life of Kéri Mihály (Michael Keri).

Kéri Mihály's children

 

I’m sharing this chart even though I have not yet found all of the children’s death dates. The highlighted entries will help me explain a thing or two.

The parents listed for the Sára christened in 1842 are Kéri Mihály and Cselei Rebeka (highlighted in blue). I believe the minister made a mistake writing Cselei instead of Nyilas. Here are my reasons:

  1. I didn’t find a Kéri-Cselei marriage record or any other children for a couple with those names.
  2. Kéri Mihály and Nyilas Rebeka had a child every two to three years. There would be a five year gap if 1842 Sára is not included in the family.
  3. The couple had a previous child they named Sára who died in 1841, a year before 1842 Sára was born.
  4. 1842 Sára’s godparents were also the godparents of five of her siblings. I looked to see if Michael Keri and Rebeka were the godparents for the Sandor Josik and Rebeka Horvat’s children. They weren’t, but Sandor Josik and Rebeka Horvat also were not the godparents for any other couple from 1841 to 1843.

Another mistake was obviously made recording dates for Ester who has some conflicting dates highlighted in red. I double checked all the information when I added it to the chart. If you were to follow the christening record and the death record, Ester was born on the 7th, christened on the 7th, died on the 6th, and buried on the 8th. Her death record also stated that she was 3 days old when she died. Obviously at least one of the dates is not correct.

Life must have been very difficult for Michael and Rebeka Keri. A little baby usually represents much hope for the future. This couple had to witness the deaths of too many of their little ones. My heart goes out to them.

————————————————————————–

550 is the product of 10 and the 10th triangular number and is, therefore, the 10th pentagonal pyramidal number.

550 is the hypotenuse of two Pythagorean triples: 330-440-550 and 154-528-550. What is the greatest common factor of each of those triples?

  • 550 is a composite number.
  • Prime factorization: 550 = 2 x 5 x 5 x 11, which can be written 550 = 2 x (5^2) x 11
  • The exponents in the prime factorization are 1, 2, and 1. Adding one to each and multiplying we get (2 + 1)(1 + 1)(1 + 1) = 3 x 2 x 2 = 12. Therefore 550 has exactly 12 factors.
  • Factors of 550: 1, 2, 5, 10, 11, 22, 25, 50, 55, 110, 275, 550
  • Factor pairs: 550 = 1 x 550, 2 x 275, 5 x 110, 10 x 55, 11 x 50, or 22 x 25
  • Taking the factor pair with the largest square number factor, we get √550 = (√25)(√22) = 5√22 ≈ 23.452079

543 Arithmetic and Genealogy

Doing genealogy is like working on a puzzle. Sometimes the smallest detail can be so important when determining who a person is. Sometimes doing a little adding or subtracting can be very helpful, too.

543-Subtracting dates

 

Unfortunately in the 1800’s many people were illiterate, and their arithmetic skills were sometimes lacking even more than that of people today. The ages given at marriage are not always accurate perhaps because the people didn’t know their true age or possibly because they added or subtracted a few years to appear older or younger than they really were. Sometimes the ages given at death are a little more accurate.

In the town of Gyoma in Békés County, Hungary there were several men named Kéri Mihály (Michael Keri). One of them was a widower who married a widow named Juhász Erzsébet (Elizabeth Juhasz or Elizabeth Shephard) on 14 September 1853 in the Hungarian Reformed Church in town. Their marriage record stated that he was 48 years old when they married, and the bride was 34.

I wanted to know exactly who this particular Michael Keri was. I looked through the Reformed Church records to find out more about him. I decided to look for his death record hoping that it would list his wife’s name on the record to help identify him.

I already knew that one year and six days after their wedding, the couple’s only child was born, a daughter that they named Lidia. Since her christening record indicated that her father was still living when she was baptized, I looked at death records beginning the very next day. After searching through over 15 years of records, I found two death records of men named Michael Keri. Unfortunately neither record mentioned a spouse or any other pertinent information. Were either of these men the person I sought?

I kept looking until I found his wife’s death record. Her record had much more information on it. It said that she was the wife of the late Keri Mihály so I knew for sure that one of those two men was her husband, but which one?

Since HER death record said how long she had been married and how long she had been widowed, I put that information at the bottom of the following chart next to her name, Juhász Erzsébet. I also did a little arithmetic to try to determine which Kéri Mihály best fit the numbers on her death record and put their numbers above hers. Thus this chart compares information from the death records of these two men named Kéri Mihály who lived in the same town and died about the same time with the information given on Juhász Erzsébet’s death record.

Comparing Death Information from Erzsébet and Two Men Named Mihály

I’ve highlighted in green that one of the men more closely fit the number of years of marriage while the other man more closely fit the number of years she would have been widowed.

I wasn’t any closer to determining which of these two men was her husband than I was before! But then….Look at the house numbers! When I added the house numbers to the chart, it became very clear that her husband was the Michael Keri who died on 30 September 1868.

Many records do not even list house numbers, and when they are listed, they are often ignored. That one little puzzle piece made all the difference in determining who this man was. In future weeks I’ll write how I put other puzzle pieces together until I formed a much clearer picture of this man named Michael Keri.

———————————————————–

543 is made from three consecutive numbers so it is divisible by 3.

543 is the hypotenuse of the Pythagorean triple 57-540-543. Can you find the greatest common factor of those three numbers?

  • 543 is a composite number.
  • Prime factorization: 543 = 3 x 181
  • The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 x 2 = 4. Therefore 543 has exactly 4 factors.
  • Factors of 543: 1, 3, 181, 543
  • Factor pairs: 543 = 1 x 543 or 3 x 181
  • 543 has no square factors that allow its square root to be simplified. √543 ≈ 23.30236

522 Gustáv Forgon and Mária Csörnök

I’ll write about the family of Gustáv Forgon and Mária Csörnök after I write a little bit about the number 522.

522 = 73 + 79 + 83 + 89 + 97 + 101 which is all the prime numbers between 72 and 102.

522 is the hypotenuse of the Pythagorean triple 360-378-522.

  • 522 is a composite number.
  • Prime factorization: 522 = 2 x 3 x 3 x 29, which can be written 522 = 2 x (3^2) x 29
  • The exponents in the prime factorization are 1, 2, and 1. Adding one to each and multiplying we get (1 + 1)(2 + 1)(1 + 1) = 2 x 3 x 2 = 12. Therefore 522 has exactly 12 factors.
  • Factors of 516: 1, 2, 3, 6, 9, 18, 29, 58, 87, 174, 261, 522
  • Factor pairs: 522 = 1 x 522, 2 x 261, 3 x 174, 6 x 87, 9 x 58, or 18 x 29
  • Taking the factor pair with the largest square number factor, we get √522 = (√9)(√58) = 3√58 ≈ 22.8473193

—————————————————————————————————

Gustáv Forgon was two years younger than my husband’s second great-grandmother, Erzsébet Forgon. They were only seventh cousins, but most likely they still knew each other quite well as they both had the same surname and grew up as part of one of the most prominent noble families in the little Hungarian village called Mihályfalva.

When Gustáv grew up, he married. His marriage record is the third record on the page below and states that his marriage occurred in 1873 on February 12. The record states that the groom was the noble Gusztáv Forgon, the son of the late noble Miklós Forgon and the noble Sarlotta Bodon. The groom was born and raised in Mihályfalva and was 25 years old. The bride was Mária Csörnök, daughter of Márton Csörnök and Zsuzsánna Miko. She was born and raised in Alsó-Vály and was 17 years old on their wedding day. Click on the record to see it better.15

The couple settled in  Alsó-Vály where they had TWELVE children born before 1896.

1st. Their first son, Ignácz Gusztáv Forgon, was born on 10 February 1875 and baptized two days later. His birth is the 5th entry on the page below. They lived in house #3 in Alsó-Vály.

26

2nd. Curiously they named their second son Gusztáv when he was born on 25 August 1876 and baptized two days later. His birth is the 3rd entry on the page below.

28

3rd. On 5 March 1879 the couple was blessed to have a daughter. They named her Apollónia Forgon, which was the same name as her godmother. Apollónia was christened two days after she was born as indicated on the 6th entry of the year. There is also a comment in the right margin: +1922 is all that I can read of it. It most likely indicates that she lived until 1922.

31

On 10 April 1881 Mária’s father, Márton Csörnök, died. He had been very weak for a while. Her parents had been married for 42 of his 62 3/4 years.

4th & 5th. On 19 May 1881 Gustáv Forgon and Mária Csörnök had twin boys! They named them István and Pál. The boys were christened the same day they were born as recorded on entries 7 and 8 below.

33

Sadly István was very weak and died four days later on 1881 May 24. His death record is number 17, very close to the middle of the page.

34

6th. Gizella was born on 11 March 1884 and baptized the next day. Her christening is the next to the last entry below.

36

7th and 8th. Gustáv Forgon and Mária Csörnök had another set of twins born on 13 April 1886. This time the twins were a boy and a girl, István and Mária. Their births are the 9th and 10th entry. Their deaths also came too early and are listed in the margins.

39

This István was also very weak and died when he was only 10 days old on the 27 April 1886. His death record is third from the bottom of the page.

38

Maria lived a little more than 9 months more than her twin, István, did. She died 1887 January 25 and was buried the next day. Her cause of death was listed as sínlődés. Online dictionaries were no help translating this word, but my very old and priceless Hungarian-English dictionary that a genealogist friend gave me equates the verb sínlődni and sínleni which means to be sickly, to be broken down in health, to languish. The record of her death is second from the top of the page.

40

9th. A daughter, Irma, was born on 23 January 1888 and baptized the next day. She was the third baby christened in 1888.

41b

On 2 March 1890 Mária’s mother, Zsuzsánna Miko, died. Her death record stated that her mother was 69 years, 11 months, and 13 days old when she died. That was very important information because I could not find Márton Csörnök and Zsuzsánna Miko marriage record to learn the names of Zsuzsánna’s parents, and there were several people named Zsuzsánna Miko in the area. Now I know exactly who she is!

10th. The family’s house number changed from #3 to #4 when László was born 28 June 1890. His baptism was on 3 July as indicated in the next to last entry on the page below. I know for sure that László grew up, married, and now has many descendants.

44

11th. The family’s house number is now #5. The family welcomed another little boy that they named István. He was born on 17 March 1894 and was baptized three days later as recorded on the 5th entry below. His death later that year is indicated in the margin as well.

51

István died 17 October 1894 and was buried two days later. This István Forgon, age 5 months, died from weakness and was only the 15th death in the area that year.

49

The record that was 3rd from the last on the same page (the 1st death record in 1895) is the death record for Gustáv’s widowed mother, Bodon Sarlolta, as it is spelled on this record. She was 72 years old when she died on 15 January 1895, and was buried two days later.

12th. Still living in house #5, the family welcomed Lajos who was born on 30 September 1895 and christened the next day. His was the 21st birth recorded in the book that year.

54

To summarize I’ve made a chart showing the children born to Gustáv Forgon and Mária Csörnök from 1875 to 1895:

I enjoy using old records to piece together a family to understand some of what they went through together. Imagining their joy when they married or had a newborn baby as well as their struggles and trials when a loved one died makes them become more than just a name and a date to me. I hope you enjoyed reading about this noble Hungarian family.

494 My First Microfilm Treasure Hunt

494 is the hypotenuse of one Pythagorean triple: 190-456-494. What is the greatest common factor of those three numbers?

  • 494 is a composite number.
  • Prime factorization: 494 = 2 x 13 x 19
  • The exponents in the prime factorization are 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1) = 2 x 2 x 2 = 8. Therefore 494 has exactly 8 factors.
  • Factors of 494: 1, 2, 13, 19, 26, 38, 247, 494
  • Factor pairs: 494 = 1 x 494, 2 x 247, 13 x 38, or 19 x 26
  • 494 has no square factors that allow its square root to be simplified. √494 ≈ 22.22611

—————————————————————————————————

Years ago my husband and I wanted to research his family tree so I decided to visit the Family History library in downtown Salt Lake City on 8 April 2010. At that time we knew the names of his four grandparents, his eight great-grandparents, and one great-great-grandfather. We knew all of these people were born in Hungary. The information we had was that two of his grandparents were born in a little town called Gyoma in what is now eastern Hungary. We had no idea where his other two grandparents were born. This day was the first time I ever looked at any Hungarian genealogical records. I knew maybe ten words in Hungarian, and I had never even seen similar records in English.

The records were recorded on microfilm which were sorted into Roman Catholic, Reformed Hungarian, Lutheran, and Jewish records. I had no idea what religion his ancestors were, but based on the number of microfilms available for each religion in Gyoma, chances were that they belonged to the Reformed Church. I found a microfilm with Kereszteltek (christening) records from 1883-1895. A volunteer showed me how to put the microfilm on a the reader, and I started looking. I made notes of which records interested me. It was so exciting to find records that had names of people I had heard stories about. It was my intention to photocopy as many family records as I could, scan them into my home computer, and email them to my son, David, who speaks Hungarian fluently but lived in Qatar at the time. However, when I went to make copies, I was pleasantly surprised to learn that I could actually copy the records directly onto a flash drive!

I emailed my son that the five hours I spent at the family history library were well spent. I didn’t find any of the christening records I was expecting to find but found about thirteen records of his ancestor’s siblings. I attached the records to the email and waited for morning to arrive in Qatar so he could reply.

The next day he emailed me back, “I only had time to look at the first four (records). I’ll check the rest later. I’ve written some notes below, but I should let you know that you basically just found four people who aren’t related to us.” He then wrote in English what each of the records said.

Later he emailed me, “To continue the bad news, Now that I look at all of them, I can see that they (the great-grandparents) are all listed as godparents. This should explain why you didn’t find much of what you were actually looking for. Now you know, and should be able to look for names in the right column.”

He sent me translations of the page headings so I wouldn’t go wrong in the future. The christening records were two pages wide. Here are the headings with his translations for the first page:

And here are the headings with translations for the 2nd page.

So there you have it. Since I knew so little Hungarian and so little about how christening records are organized, I thought the godparents were the parents.

I had to wait a whole week before I could go back to the library, but this first visit was not a total bust. We still learned a few things about my husband’s great-grandfather, Dániel Finta, that we didn’t know before. We learned that he worked in a factory making shoes because his profession was given next to his name on at least one record. We learned that Dániel was asked on several occasions to be a godfather. Sometimes his wife was the godmother with him, and sometimes his mother was. Because I found these records we now knew his mother’s name, Sára Bíró, as well. We also learned that Dániel belonged to the Reformed Church and his wife, Emília Pribelszky, was Lutheran.

I was grateful for what we had learned and anxious to return again.

How successful were you the first time you looked into your family history? If you were discouraged, please give it another try. It is so worth it. If you were successful, you know exactly what I mean.