Occasionally,  we hear that the number of Easter eggs that are found is one or two less than the number of eggs that were hidden. Still most of the time, all the eggs and candies do get found. You really have no trouble finding all those goodies, and the Easter Egg Hunt seems like it is over in seconds.  You can find Easter Eggs but can you find factors? Here’s an Easter Basket Find the Factors 1 – 10 Challenge Puzzle for you. I guarantee it won’t be done in seconds. Can you find all the factors? I dare you to try! Print the puzzles or type the solution in this excel file: 10 Factors 1373-1388

Now I’ll mention a few facts about the number 1377:

• 1377 is a composite number.
• Prime factorization: 1377 = 3 × 3 × 3 × 3 × 17, which can be written 1377 = 3⁴ × 17
• 1377 has at least one exponent greater than 1 in its prime factorization so √1377 can be simplified. Taking the factor pair from the factor pair table below with the largest square number factor, we get √1377 = (√81)(√17) = 9√17
• The exponents in the prime factorization are 4 and 1. Adding one to each exponent and multiplying we get (4 + 1)(1 + 1) = 5 × 2 = 10. Therefore 1377 has exactly 10 factors.
• The factors of 1377 are outlined with their factor pair partners in the graphic below. 1377 is the sum of two squares:
36² + 9² = 1377

1377 is the hypotenuse of a Pythagorean triple:
648-1215-1377 which is (8-15-17) times 81
and can also be calculated from 2(36)(9), 36² – 9², 36² + 9²

# 1038 Hoppy Easter/April Fool’s Day

A trickster Easter bunny left some of my grandchildren candy and other treasures, not in a traditional Easter basket but in pink, green, and orange pumpkins! It’s April Fool’s Day so we shouldn’t be surprised.

That same trickster bunny has a purple pumpkin puzzle for YOU to try today, too. Part of the puzzle is easy while other parts are tricky: Is it 3 or 5 that is the common factor of 30 and 15 that makes this puzzle work?

Hmm…can you figure out where to put the numbers 1 to 10 in the first column and the top row or will you be tricked this April Fool’s Day? Print the puzzles or type the solution in this excel file: 10-factors-1035-1043

Now I’ll tell you a little bit about the number 1038.

1 + 8 is divisible by 3 so 1038 is also divisible by 3. (Including multiples of 3 in the sum isn’t necessary for that divisibility trick to work.)

• 1038 is a composite number.
• Prime factorization: 1038 = 2 × 3 × 173
• The exponents in the prime factorization are 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1) = 2 × 2 × 2 = 8. Therefore 1038 has exactly 8 factors.
• Factors of 1038: 1, 2, 3, 6, 173, 346, 519, 1038
• Factor pairs: 1038 = 1 × 1038, 2 × 519, 3 × 346, or 6 × 173
• 1038 has no square factors that allow its square root to be simplified. √1038 ≈ 32.218007 1038 is also the hypotenuse of a Pythagorean triple:
312-990-1038 which is 6 times (52-165-173)

# 448 Because He Lives

Happy Easter! The song, “Because He Lives,” is especially appropriate for Easter.

The composer, Sally DeFord, has written some absolutely beautiful music. You can download PDF’s of ANY of her sheet music for FREE on her website. This particular arrangement is written for a duet, but there is also a version for SATB. There are PDF’s of this particular song translated into Spanish, Portuguese, and Finnish. One of the people who commented even gave a translation into Chinese.

Since this is my 448th post, I’ll give some information about the number 448.

448 is another Harshad number because 4 + 4 + 8 = 16, and 448 can be evenly divided by 16. • 448 is a composite number.
• Prime factorization: 448 = 2 x 2 x 2 x 2 x 2 x 2 x 7, which can be written 448 = (2^6) x 7
• The exponents in the prime factorization are 6, and 1. Adding one to each and multiplying we get (6 + 1)(1 + 1) = 7 x 2 = 14. Therefore 448 has exactly 14 factors.
• Factors of 448: 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 224, 448
• Factor pairs: 448 = 1 x 448, 2 x 224, 4 x 112, 7 x 64, 8 x 56, 14 x 32, or 16 x 28
• Taking the factor pair with the largest square number factor, we get √448 = (√64)(√7) = 8√7 ≈ 21.16601 