1787 The11-Digit Palindromes of Base 2

Today’s Puzzle:

1787 is an 11-digit palindrome in base 2. I wondered how many 11-digit palindromes there are, what they are, and what numbers they represent in base ten. I decided to try to make you wonder about all that as well. Try it out yourself before you read how I solved this puzzle.

The only digits in base 2, are 0 and 1. The first digit of any number must be 1 or else the number will not have eleven digits. The last digit also must be one for the number to be a palindrome. In fact, all five last digits will be determined by the first five digits. Thus, we only need to find all possible combinations of 0 and 1 that can occur in the second through sixth positions. There are 2⁵ ways to write 0 and 1 in those 5 positions. That means we know right away that there are 32 different 11-digit palindromes in base 2. I opened Excel and wrote those 32 different 11-digit numbers beginning with 00000 and ending with 11111. I put a 1 in front of them and had Excel copy the appropriate numbers into the last 5 spots. That gave me all the 11-digit palindromes. Then I had Excel multiply the values in each cell with the powers of 2 that head up each column to give the base 10 representations. This chart was the final product.

Did you notice that the first base 10 number in the chart is the number just after 2¹º and the last number is the number right before 2¹¹?

Factors of 1787:

  • 1787 is a prime number.
  • Prime factorization: 1787 is prime.
  • 1787 has no exponents greater than 1 in its prime factorization, so √1787 cannot be simplified.
  • The exponent in the prime factorization is 1. Adding one to that exponent we get (1 + 1) = 2. Therefore 1787 has exactly 2 factors.
  • The factors of 1787 are outlined with their factor pair partners in the graphic below.

How do we know that 1787 is a prime number? If 1787 were not a prime number, then it would be divisible by at least one prime number less than or equal to √1787. Since 1787 cannot be divided evenly by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, or 41, we know that 1787 is a prime number.

More About the Number 1787:

1787 and 1789 are twin primes.
1783, 1787, and 1789 are a prime triplet.

1787 is a palindrome in some other bases, too!
It’s 919 in base 14 because 9(14²) + 1(14) + 9(1) = 1787,
595 in base 18 because 5(18²) + 9(18) + 5(1) = 1787, and
191 in base 38 because 1(38²) + 9(38) + 1(1) = 1787.

809 Palindromes, Factors, Whoop-de-doo

Print the puzzles or type the solution on this excel file: 10-factors 807-814

Normally I would tell you that 809 is a palindrome in two different bases:

  • 676 in BASE 11 because 6(121) + 7(11) + 6(1) = 809
  • 575 in BASE 12 because 5(144) + 7(12) +5(1) = 809

But whoop-de-doo, all that really means is that (x – 11) is a factor of 6x² + 7x – 803, and (x – 12) is a factor of 5x² + 7x – 804.

Isn’t it just as exciting that ⁰¹²³⁴⁵⁶⁷⁸⁹

  • (x – 2) is a factor of x⁹+ x⁸ + x⁵ + x³ – 808 because 809 is 1100101001 in BASE 2?
  • (x – 3) is a factor of x⁶ + 2x³ + 2x² +2x – 807 because 809 is 1002222 in BASE 3?
  • (x – 4) is a factor of 3x⁴ + 2x² + 2x – 808 because 809 is 30221 in BASE 4?
  • (x – 5) is a factor of x⁴ + x³ + 2x² + x – 805 because 809 is 11214 in BASE 5?

Notice that the last number in each of those polynomials is divisible by the BASE number.

Palindromes NEVER end in zero so the polynomials they produce will NEVER end in the original base 10 number.

So are palindromes really so special? Today I am much more excited that figuring out what a number is in another base can give us a factor of a corresponding polynomial!

How do I know what those polynomials are? Let me use 809 in BASE 6 as an example:

Since 809 is 3425 in BASE 6, I know that

  • 3(6³) + 4(6²) + 2(6¹) + 5(6º) = 809
  • 3(216) + 4(36) + 2(6) + 5(1) – 809 = 0
  • so 3(216) + 4(36) + 2(6) – 804 = 0
  • thus (x – 6) is a factor of 3x³ + 4x² + 2x – 804 because of the factor theorem.

If I told you what 809 is in Bases 7, 8, 9, and 10 would you be able to write the corresponding polynomials that are divisible by (x – 7), (x – 8), (x – 9), and (x – 10) respectively?

  • 2234 in BASE 7
  • 1451 in BASE 8
  • 1088 in BASE 9
  • 809 in BASE 10

Scroll down past 809’s factoring information to see if you found the correct polynomials.

—————–

  • 809 is a prime number.
  • Prime factorization: 809 is prime.
  • The exponent of prime number 809 is 1. Adding 1 to that exponent we get (1 + 1) = 2. Therefore 809 has exactly 2 factors.
  • Factors of 809: 1, 809
  • Factor pairs: 809 = 1 x 809
  • 809 has no square factors that allow its square root to be simplified. √809 ≈ 28.4429253066558.

How do we know that 809 is a prime number? If 809 were not a prime number, then it would be divisible by at least one prime number less than or equal to √809 ≈ 28.4. Since 809 cannot be divided evenly by 2, 3, 5, 7, 11, 13, 17, 19, or 23, we know that 809 is a prime number.

Here’s another way we know that 809 is a prime number: Since its last two digits divided by 4 leave a remainder of 1, and 28² + 5² = 809 with 28 and 5 having no common prime factors, 809 will be prime unless it is divisible by a prime number Pythagorean triple hypotenuse less than or equal to √809 ≈ 28.4. Since 809 is not divisible by 5, 13, or 17, we know that 809 is a prime number.

——————–

Were you able to find those polynomials from knowing what 809 is in other bases? Check your work with the answers below:

  • 2234 Base 7 tells us (x – 7) is a factor of 2x³ + 2x² + 3x – 805
  • 1451 Base 8 tells us (x – 8) is a factor of x³ + 4x² + 5x – 808
  • 1088 Base 9 tells us (x – 9) is a factor of x³ + 8x – 801
  • 809 Base 10 tells us (x – 10) is a factor of 8x² – 800

If you’ve made it this far, even if I’ve made you feel a little dizzy, you’ve done GREAT! Keep up the good work!