A Multiplication Based Logic Puzzle

Posts tagged ‘Factors’

1034 Find the Factors Challenge Puzzle

One of the things I really like about these Challenge puzzles is that you have to use logic. Guessing and checking just won’t work. Go ahead and give this puzzle a try!

Print the puzzles or type the solution in this excel file: 12 factors 1028-1034

Here are a few facts about the number 1034:

1 – 0 + 3 – 4 = 0, so 1034 can be evenly divided by 11.

Because 1034 = 2(47)(11), it is the short leg of a few Pythagorean triples including
1034-2088-2330 calculated from 2(47)(11), 47² – 11², 47² + 11²

  • 1034 is a composite number.
  • Prime factorization: 1034 = 2 × 11 × 47
  • The exponents in the prime factorization are 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1) = 2 × 2 × 2 = 8. Therefore 1034 has exactly 8 factors.
  • Factors of 1034: 1, 2, 11, 22, 47, 94, 517, 1034
  • Factor pairs: 1034 = 1 × 1034, 2 × 517, 11 × 94, or 22 × 47
  • 1034 has no square factors that allow its square root to be simplified. √1034 ≈ 32.15587

Advertisements

1032 How Many Twelves Are in a 12×12 Times Table?

How many 12’s are in a standard 12×12 times table? There are five 12’s in the puzzle below. Six, if you count the 12 in the title. Is that too many, just the right number, or are there even more?

This is only a level 2 puzzle so it won’t be difficult to solve. . . unless I’ve put in too many 12’s!

Hmm. . .Try solving the puzzle, then fill in the rest of the multiplication table. Then you will know for sure how many 12’s SHOULD be in the table.

Print the puzzles or type the solution in this excel file: 12 factors 1028-1034

The number 1032 is divisible by 12. Here are a few more facts about that number:

1032 is made with a zero and three consecutive numbers so it is divisible by 3.

The last two digits of 1032 are 32 so 1032 can be evenly divided by 4.

Since 32 is divisible by 8 and preceded by an even zero in 1032, our number is also divisible by 8.

As you will soon see, 1032 is divisible by even more numbers than those listed above. Here are three of its factor trees:

1032 looks interesting in a couple of different bases:
It’s 4440 in BASE 6 because 4(6³ + 6² + 6¹) = 4(258) = 1032, and
it’s palindrome 3003 in BASE 7 because 3(7³ + 7⁰) = 3(344) = 1032.

  • 1032 is a composite number.
  • Prime factorization: 1032 = 2 × 2 × 2 × 3 × 43, which can be written 1032 = 2³ × 3 × 43
  • The exponents in the prime factorization are 3, 1, and 1. Adding one to each and multiplying we get (3 + 1)(1 + 1)(1 + 1) = 4 × 2 × 2 = 16. Therefore 1032 has exactly 16 factors.
  • Factors of 1032: 1, 2, 3, 4, 6, 8, 12, 24, 43, 86, 129, 172, 258, 344, 516, 1032
  • Factor pairs: 1032 = 1 × 1032, 2 × 516, 3 × 344, 4 × 258, 6 × 172, 8 × 129, 12 × 86, or 24 × 43
  • Taking the factor pair with the largest square number factor, we get √1032 = (√4)(√258) = 2√258 ≈ 32.12476

1030 Cupid’s Arrow

Love can often be like a puzzle. When cupid’s arrow hits its mark, at first everything might seem to fall into place, but before long, love starts getting complicated and has to be figured out.

That’s the way this Cupid’s Arrow puzzle is, too. It’s easy to find the logic to start it, but then the logic will be more difficult to see. May you be able to figure out this puzzle as well as the important relationships in your life!

Print the puzzles or type the solution in this excel file: 12 factors 1028-1034

What can I tell you about the number 1030?

It’s the sum of two consecutive prime numbers:
509 + 521 = 1030

It’s the hypotenuse of a Pythagorean triple:
618-824-1030 which is (3-4-5) times 206

It’s palindrome 1102011 in BASE 3 because 3⁶ + 3⁵ + 2(3³) + 3¹ + 3⁰ = 1030

  • 1030 is a composite number.
  • Prime factorization: 1030 = 2 × 5 × 103
  • The exponents in the prime factorization are 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1) = 2 × 2 × 2 = 8. Therefore 1030 has exactly 8 factors.
  • Factors of 1030: 1, 2, 5, 10, 103, 206, 515, 1030
  • Factor pairs: 1030 = 1 × 1030, 2 × 515, 5 × 206, or 10 × 103
  • 1030 has no square factors that allow its square root to be simplified. √1030 ≈ 32.09361

 

1029 A Rose for Your Valentine

A dozen roses can be pretty pricey around Valentine’s Day, but at least one website asserts that a single rose can make just as big a statement and just as big an impact. Today’s mystery level puzzle looks like a single rose. I hope you will enjoy its beauty even if its thorns are prickly.

Print the puzzles or type the solution in this excel file: 12 factors 1028-1034

Here are a few facts about the number 1029:

It’s easy to see that 1029 can be evenly divided by 3 because 1 + 0 + 2 + 9 = 12, a number divisible by 3.

It’s not quite as easy to tell that it can be evenly divided by 7:
It is because 102 – 2(9) = 102 – 18 = 84, a number divisible by 7.

I like the way 1029 looks when it is written in some other bases:
It’s 4433 in BASE 6 because 4(6³) + 4(6²) + 3(6¹) + 3(6⁰) = 4(216 + 36) + 3(6 + 1) = 1029,
3000 in BASE 7 because 3(7³) = 3(343) = 1029,
399 in BASE 17 because 3(17²) + 9(17) + 9(1) = 3(289 + 51 + 3) = 3(343) = 1029
333 in BASE 18 because 3(18² + 18 + 1) = 3(343) = 1029

  • 1029 is a composite number.
  • Prime factorization: 1029 = 3 × 7 × 7 × 7, which can be written 1029 = 3 × 7³
  • The exponents in the prime factorization are 1 and 3. Adding one to each and multiplying we get (1 + 1)(3 + 1) = 2 × 4 = 8. Therefore 1029 has exactly 8 factors.
  • Factors of 1029: 1, 3, 7, 21, 49, 147, 343, 1029
  • Factor pairs: 1029 = 1 × 1029, 3 × 343, 7 × 147, or 21 × 49
  • Taking the factor pair with the largest square number factor, we get √1029 = (√49)(√21) = 7√21 ≈ 32.07803

 

1028 A Valentine Mystery

Valentine’s Day is almost here so I’ve made three Valentine related puzzles this week. I’ve labeled all of three of them Mystery Level because you might find some of them to be difficult. Use logic and an ordinary 12 × 12 multiplication table. I promise that each one of them can be solved, and I hope that you LOVE working on them! There will be some easier puzzles later on in the week.

Print the puzzles or type the solution in this excel file: 12 factors 1028-1034

Let me tell you a little about the number 1028:

32² + 2² = 1028 so 1028 is the hypotenuse of a Pythagorean triple:
128-1020-1028 which is 4 times (32-255-257) and can be calculated from 2(32)(2), 32² – 2², 32² + 2²

1028 is a palindrome when it is written in a couple of different bases:
404 in BASE 16 because 4(16²) + 4(1) = 4(257) = 1028
2G2 in BASE 19 (G is 16 base 10) because 2(19²) + 16(19) + 2(1) = 1028

  • 1028 is a composite number.
  • Prime factorization: 1028 = 2 × 2 × 257, which can be written 1028 = 2² × 257
  • The exponents in the prime factorization are 2 and 1. Adding one to each and multiplying we get (2 + 1)(1 + 1) = 3 × 2  = 6. Therefore 1028 has exactly 6 factors.
  • Factors of 1028: 1, 2, 4, 257, 514, 1028
  • Factor pairs: 1028 = 1 × 1028, 2 × 514, or 4 × 257
  • Taking the factor pair with the largest square number factor, we get √1028 = (√4)(√257) = 2√257 ≈ 32.062439

 

1027 Find the Factors Challenge

I’m really enjoying these Find the Factors Challenge puzzles, and I hope that you will give them a try and love them, too. You can find this one as well as a little less challenging one in the excel file link below the puzzle. You can type the factors directly on that file. Remember to use logic for every single factor pair you use.

Print the puzzles or type the solution in this excel file: 10-factors-1019-1027

Now I’ll tell you a little about the number 1027:

It is the sum of seven consecutive prime numbers:
131 + 137 + 139 + 149 + 151 + 157 + 163 = 1027

It is the sum of the squares of the first eight prime numbers:
2² +  3² +  5² +  7² +  11² +  13² +  17² +  19² = 1027
Indeed, 666 + 19² = 1027. Thanks to Stetson.edu for that fun fact.

Because 19³ – 18³ = 1027, it is the 19th Centered Hexagonal Number.
That also means that 19² + 19(18) + 18² = 1027
because a³ – b³ = (a-b)(a²+ab+b²).

1027 is the hypotenuse of a Pythagorean triple:
395-948-1027 which is (5-12-13) times 79.

1027 is also a palindrome when it is written in these three other bases:
717 in BASE 12
535 in BASE 14
1B1 in BASE 27 (B is 11 base 10)

  • 1027 is a composite number.
  • Prime factorization: 1027 = 13 × 79
  • The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 × 2 = 4. Therefore 1027 has exactly 4 factors.
  • Factors of 1027: 1, 13, 79, 1027
  • Factor pairs: 1027 = 1 × 1027 or 13 × 79
  • 1027 has no square factors that allow its square root to be simplified. √1027 ≈ 32.0468

 

1026 One Last Mystery

I made a week’s worth of mystery level puzzles, and today’s puzzle is the last one in the set. Find the Factors of the clues in this puzzle by using logic and your knowledge of the multiplication table. It may not be easy for you, but give it a try anyway. If you find it too difficult, I will soon publish some more easier-level puzzles.

Print the puzzles or type the solution in this excel file: 10-factors-1019-1027

Now let me share a few facts about the number 1026:

1026 is the sum of the fourteen prime numbers from 43 to 103.

I like the way 1026 looks when it is written in these other bases:
It’s 2002 in BASE 8,
396 in BASE 17,
330 in BASE 18,
1G1 in BASE 25 (G is 16 base 10), and
123 in BASE 31

  • 1026 is a composite number.
  • Prime factorization: 1026 = 2 × 3 × 3 × 3 × 38, which can be written 1026 = 2 × 3³ × 38
  • The exponents in the prime factorization are 1, 3, and 1. Adding one to each and multiplying we get (1 + 1)(3 + 1)(1 + 1) = 2 × 4 × 2 = 16. Therefore 1026 has exactly 16 factors.
  • Factors of 1026: 1, 2, 3, 6, 9, 18, 19, 27, 38, 54, 57, 114, 171, 342, 513, 1026
  • Factor pairs: 1026 = 1 × 1026, 2 × 513, 3 × 342, 6 × 171, 9 × 114, 18 × 57, 19 × 54, or 27 × 38
  • Taking the factor pair with the largest square number factor, we get √1026 = (√9)(√114) = 3√114 ≈ 32.03123

Tag Cloud