A Multiplication Based Logic Puzzle

Posts tagged ‘centered square number’

You’ll Be Impressed By 841’s Number Facts

841 is a very cool square number. 29 × 29 = 841. You can write it more compactly: 29² = 841. Here are some facts about this square number:

841 is the sum of the 29th and the 28th triangular numbers because 841 = 435 + 406.

What’s that you say? Every other square number can make a similar claim? Oh. … Wait a minute…Not EVERY square number can do that. One is a square number, and it’s NOT the sum of two triangular numbers. So there…

How about this… 841 is the sum of the first 29 odd numbers. That makes it the sum of all the odd numbers from 1 to 57. That’s impressive!

What? All square numbers do that? Huh??? n² is always the sum of the first n odd numbers? Why’d you have to tell me that fact isn’t particularly unique either!

Okay…841 is an interesting number in a few other bases. Pay attention….  841 is

  • 100 in BASE 29
  • 121 in BASE 28
  • 144 in BASE 27
  • 169 in BASE 26
  • 441 in BASE 14

Ha! You didn’t know that one! … Now don’t go spoiling my glee by telling me that those same square numbers show up for a few other square numbers, too. Don’t tell me that!

Give me one more chance to impress you….This square number, 841, is the sum of two consecutive square numbers, so 20² + 21² = 841 = 29². That hasn’t happened to a square number since 3² + 4² = 25 = 5². That makes 841 the 21st Centered Square Number but only the SECOND square number that is both kinds of squares! There may be an infinite number of squares that do the same thing, but it is still a fairly unique characteristic.

There are 441 blue squares in that graphic. There are 400 squares that are orange, red, green, purple, or black. 441 + 400 = 841.

Here are a few other tidbits about 841:

841 is the sum of the nine prime numbers from 73 to 109. It is also the sum of three consecutive primes: 277 +  281 + 283 = 841

841 is the hypotenuse of TWO Pythagorean triples:

  • 580-609-841 which is 29 times (20-21-29)
  • 41-840-841 calculated from 21² – 20², 2(21)(20), 21² + 20²

841 Pythagorean triple Recursion: Hmm…How Quickly Can I Give You a Headache? Warning! Reading this set of bullet points might overload your brain:

  • 5² + 2² = 29, so (2∙5∙2)² + (5² – 2²)² = (5² + 2²)² which means 20² + 21² = 29² = 841.
  • 21² + 20² = 841, so (2∙21∙20)² + (21² – 20²)² = (21² + 20²)² which means 840² + 41² = 841² = (29²)² = 707281.
  • 840² + 41² = 707281, so (2∙840∙41)² + (840² – 41²)² = (840² + 41²)² which means 68880² + 703919² = 707281² = ((29²)²)² = 500,246,412,961
  • We could go on forever with even bigger powers of 29 …

We’ll finish with just some simple, easy-on-the-brain facts about 841:

29 is the tenth prime number. Its square, 841, is only the tenth number to have exactly three factors.

  • 841 is a composite number.
  • Prime factorization: 841 = 29²
  • The exponent in the prime factorization is 2. Adding one we get (2 + 1) = 3. Therefore 841 has exactly 3 factors.
  • Factors of 841: 1, 29, 841
  • Factor pairs: 841 = 1 × 841 or 29 × 29
  • 841 is a perfect square. √841 = 29


I’m impressed by all this, even if you aren’t.

 

Advertisements

761 and Level 1

  • 761 is a prime number.
  • Prime factorization: 761 is prime.
  • The exponent of prime number 761 is 1. Adding 1 to that exponent we get (1 + 1) = 2. Therefore 761 has exactly 2 factors.
  • Factors of 761: 1, 761
  • Factor pairs: 761 = 1 x 761
  • 761 has no square factors that allow its square root to be simplified. √761 ≈ 27.586228.

761-factor-pairs

How do we know that 761 is a prime number? If 761 were not a prime number, then it would be divisible by at least one prime number less than or equal to √761 ≈ 27.6. Since 761 cannot be divided evenly by 2, 3, 5, 7, 11, 13, 17, 19, or 23, we know that 761 is a prime number.

There will be a lot about squares in today’s post, and all of the clues in today’s puzzle are perfect squares, too:

761 Puzzle

Print the puzzles or type the solution on this excel file: 10 Factors 2016-02-04

—————————————

Here’s more about the number 761:

Because 761 is a prime number, there is only one way to write it as the sum of consecutive numbers: 380 + 381 = 761.

However, because it is a centered square number, 761 can be written as the sum of consecutive square numbers: 20² + 19² = 761.

761 Centered Square Number

And because it is the sum of two consecutive square numbers, it is also the hypotenuse of a primitive Pythagorean triple: 39-760-761 which was calculated using 20² – 19², 2(20)(19), 20² + 19².

Notice also that 20 + 19 = 39, ⌊39²/2⌋ = 760, and ⌈39²/2⌉ = 761. (Those peculiar parenthesis mean⌊round down to the closest whole number⌋ and ⌈round up to the closest whole number⌉.)

In the 39 x 39 graphic shown above there are 760 white squares and 761 squares with some color. Thus, looking at that graphic is one way to look at the primitive Pythagorean triple 39-760-761.

All of that gives us another way to know that 761 is a prime number: Since its last two digits divided by 4 leave a remainder of 1, and 20² + 19² = 761 with 20 and 19 having no common prime factors, 761 will be prime unless it is divisible by a prime number Pythagorean hypotenuse less than or equal to √761 ≈ 27.6. Since 761 is not divisible by 5, 13, or 17, we know that 761 is a prime number.

761 can also be expressed as the sum of three squares TEN ways:

  • 27² + 4² + 4² = 761
  • 26² + 9² + 2² = 761
  • 26² + 7² + 6² = 761
  • 25² + 10² + 6² = 761
  • 24² + 13² + 4² = 761
  • 24² + 11² + 8² = 761
  • 23² + 14² + 6² = 761
  • 22² + 14² + 9² = 761
  • 21² + 16² + 8² = 761
  • 19² + 16² + 12² = 761

761 is a palindrome in two different bases:

  • 535 BASE 12; note that 5(144) + 3(12) + 5(1) = 761.
  • 1I1 BASE 20 (I = 18 base 10); note that 1(400) + 18(20) + 1(1) = 761.

—————————————

761 Factors

685 Is the Sum of Two Squares Two Different Ways

Because both of its prime factors are hypotenuses of primitive Pythagorean triples, 685 is the hypotenuse of FOUR Pythagorean triples. Two are primitive; two are not:

  • 37-684-685 which was calculated from 19² – 18², 2(19)(18), 19² + 18²
  • 156-667-685 which was calculated from 2(26)(3), 26² – 3², 26² + 3²
  • 411-548-685 (What factor of 685 is the greatest common factor of those 3 numbers?)
  • 440-525-685 (and what is their greatest common factor?)

As you may have notice from those calculations, 685 is the sum of two squares two different ways:

  • 19² + 18² = 685
  • 26² + 3² = 685

685 is the 19th centered square number because 18 and 19 are consecutive numbers and 19² + 18² = 685. There are 685 small squares of various colors in this graphic.

685 is the 19th Centered Squared Number

—————————————————————————————————

  • 685 is a composite number.
  • Prime factorization: 685 = 5 x 137
  • The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 x 2 = 4. Therefore 685 has exactly 4 factors.
  • Factors of 685: 1, 5, 137, 685
  • Factor pairs: 685 = 1 x 685 or 5 x 137
  • 685 has no square factors that allow its square root to be simplified. √685 ≈ 26.172505.

—————————————————————————————————

Tag Cloud