A Multiplication Based Logic Puzzle

Archive for the ‘Level 6 Puzzle’ Category

874 and Level 6

874 is the sum of the first 23 prime numbers:

  • 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 = 874

ALL of 874’s prime factors were included in that list.

Print the puzzles or type the solution on this excel file: 12 factors 864-874

  • 874 is a composite number.
  • Prime factorization: 874 = 2 × 19 × 23
  • The exponents in the prime factorization are 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1) = 2 × 2 × 2 = 8. Therefore 874 has exactly 8 factors.
  • Factors of 874: 1, 2, 19, 23, 38, 46, 437, 874
  • Factor pairs: 874 = 1 × 874, 2 × 437, 19 × 46, or 23 × 38
  • 874 has no square factors that allow its square root to be simplified. √874 ≈ 29.56349.

Advertisements

860 and Level 6

Print the puzzles or type the solution on this excel file: 10-factors-853-863

860 is the hypotenuse of a Pythagorean triple: 516-688-860, which is (3-4-5) times 172.

860 can be written as the sum of four consecutive prime numbers: 199 + 211 + 223 + 227 = 860

  • 860 is a composite number.
  • Prime factorization: 860 = 2 × 2 × 5 × 43, which can be written 860 = 2² × 5 × 43
  • The exponents in the prime factorization are 2, 1, and 1. Adding one to each and multiplying we get (2 + 1)(1 + 1)(1 + 1) = 3 × 2 × 2 = 12. Therefore 860 has exactly 12 factors.
  • Factors of 860: 1, 2, 4, 5, 10, 20, 43, 86, 172, 215, 430, 860
  • Factor pairs: 860 = 1 × 860, 2 × 430, 4 × 215, 5 × 172, 10 × 86, or 20 × 43,
  • Taking the factor pair with the largest square number factor, we get √860 = (√4)(√215) = 2√215 ≈ 29.3257566

852 and Level 6

Print the puzzles or type the solution on this excel file: 12 factors 843-852

I knew that 852 was divisible by 3 as soon as I typed it in a straight line on the number pad. Any 3 digit number that lies on a straight line on a number pad or a phone dial pad is divisible by 3. And in case you’ve ever wondered why the numbers on a number pad or calculator and the numbers on a phone dial pad are reversed, ABC News has the answer.

852 is 705 in BASE 11, and it is 507 in BASE 13.

852 is palindrome 1E1 in BASE 23 (E is 14 base 10) because 1(23²) +14(23¹) + 1(23º) = 852.

852 is the sum of consecutive prime numbers 421 and 431.

852 is also the 24th pentagonal number because (3⋅24² – 24)/2 = 852

  • 852 is a composite number.
  • Prime factorization: 852 = 2 × 2 × 3 × 71, which can be written 852 = 2² × 3 × 71
  • The exponents in the prime factorization are 2, 1, and 1. Adding one to each and multiplying we get (2 + 1)(1 + 1)(1 + 1) = 3 × 2 × 2 = 12. Therefore 852 has exactly 12 factors.
  • Factors of 852: 1, 2, 3, 4, 6, 12, 71, 142, 213, 284, 426, 852
  • Factor pairs: 852 = 1 × 852, 2 × 426, 3 × 284, 4 × 213, 6 × 142, or 12 × 71,
  • Taking the factor pair with the largest square number factor, we get √852 = (√4)(√213) = 2√213 ≈ 29.189039

847 Sending Love to My Sister in Louisianna

Print the puzzles or type the solution on this excel file: 12 factors 843-852

My sister, Sue, lives in Louisiana. Several years ago Katrina upset her life, and now Harvey is pounding at her door. I have not heard from her since yesterday when she posted this dreary picture on facebook with the caption, “Flooded at my street.”

Sue, I hope you are okay. If you need a diversion, I hope this puzzle helps at least a tiny bit. I made it just for you. If you need someplace to stay, you can stay with me and my family. We send lots of love and prayers your way.

We also have a son, daughter-in-law, and two grandchildren who live in the Houston area. They are doing okay, but many of their friends are struggling. We pray for them as well.

After the freightening wind died down some, my daughter-in-law posted this picture with the caption, “Day 2 of Hurricane Harvey: We found a Craw-Dad in the back yard!”

My daughter-in-law later posted, “For those of you who are not in Houston I wanted to give you an update. We are located in Kingwood which is northeast of Houston. We have had rain since last Friday and many of our lakes, rivers and bayous are flowing out of their banks. Our home has been very blessed to be in a neighborhood where the rain water is draining nicely, so far. But many of our friends are not as lucky and have had to evacuate due to high water in their homes. We had one small leak in our kitchen, but were able to cover it and stop the dripping. We feel very blessed, but also very concerned for our friends and neighbors. Houston could use your prayers.”

I would like to add that Louisiana and several other towns and cities in Texas could use our prayers, help, and donations.

//platform.twitter.com/widgets.js

Now I’ll write a little about the number 847:

844, 845, 846, 847, and 848 are the smallest five consecutive numbers whose square roots can be simplified.

847 is palindrome 1011101 in BASE 3 because 3⁶ + 3⁴ + 3³ + 3² + 3º = 847.

847 is also 700 in BASE 11 because 7(11²) = 847.

Stetson.edu informs us that 847 is the sum of the digits of 2¹⁴ – 1, the 14th Mersenne prime. Since its digits sum to 847, that prime number has to be at least 95 digits long!

  • 847 is a composite number.
  • Prime factorization: 847 = 7× 11 × 11, which can be written 847 = 7 × 11²
  • The exponents in the prime factorization are 2 and 1. Adding one to each and multiplying we get (1 + 1)(2 + 1) = 2 × 3  = 6. Therefore 847 has exactly 6 factors.
  • Factors of 847: 1, 7, 11, 77, 121, 847
  • Factor pairs: 847 = 1 × 847, 7 × 121, or 11 × 77
  • Taking the factor pair with the largest square number factor, we get √847 = (√121)(√7) = 11√7 ≈ 29.1032644

834 and Level 6

834 is the sum of consecutive prime numbers two different ways:

  • 127 + 131 + 137 + 139 + 149 + 151 = 834; that’s six consecutive primes
  • 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 = 834; that’s fourteen consecutive primes

The ONLY Pythagorean triple that contains the number 834 is 834 – 173888 – 173890.

  • 834 is a composite number.
  • Prime factorization: 834 = 2 × 3 × 139
  • The exponents in the prime factorization are 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1) = 2 × 2 × 2 = 8. Therefore 834 has exactly 8 factors.
  • Factors of 834: 1, 2, 3, 6, 139, 278, 417, 834
  • Factor pairs: 834 = 1 × 834, 2 × 417, 3 × 278, or 6 × 139
  • 834 has no square factors that allow its square root to be simplified. √834 ≈ 28.879058

There was a solar eclipse in the United States today. People where I lived were able to experience 91.32% obstruction of the sun. I love this interactive map of today’s eclipse and past and future ones as well.

Several people have taken and shared marvelous pictures of the eclipse.

Here are a few tweets I saw about eclipses on twitter:

//platform.twitter.com/widgets.js

//platform.twitter.com/widgets.js

//platform.twitter.com/widgets.js

//platform.twitter.com/widgets.js

//platform.twitter.com/widgets.js

828 Try Synthetic Division on These Special Polynomials

828 is the sum of consecutive prime numbers 409 and 419.

Print the puzzles or type the solution on this excel file: 10-factors-822-828

828 has a lot of factors so I decided to use it in my examples of synthetic division. What are the factors of 828?

  • 828 is a composite number.
  • Prime factorization: 828 = 2 × 2 × 3 × 3 × 23, which can be written 828 = 2² × 3² × 23
  • The exponents in the prime factorization are 2, 2 and 1. Adding one to each and multiplying we get (2 + 1)(2 + 1)(1 + 1) = 3 × 3 × 2 = 18. Therefore 828 has exactly 18 factors.
  • Factors of 828: 1, 2, 3, 4, 6, 9, 12, 18, 23, 36, 46, 69, 92, 138, 207, 276, 414, 828
  • Factor pairs: 828 = 1 × 828, 2 × 414, 3 × 276, 4 × 207, 6 × 138, 9 × 92, 12 × 69, 18 × 46 or 23 × 36
  • Taking the factor pair with the largest square number factor, we get √828 = (√36)(√23) = 6√23 ≈ 28.774989.

Synthetic division is taught in many schools in the United States, but in other places in the world it typically is not taught at all. I like synthetic division. I disagree with those few people who describe it as a mostly useless trick that isn’t worth learning. Yes, its usefulness is limited, but when it can be used, it can be absolutely wonderful. Personally, I almost always use synthetic division when dividing polynomials by (x-a) or (x+a) where a is any whole number. (If a is a fraction, synthetic division can still be done, but it might not be much fun.)

What are some of the advantages of using synthetic division?

  • If you had a polynomial where x is raised to several different powers, such as x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x – 8, you would only have to write 1 1 1 1 1 1 1 1 1 -8 to perform the algorithm. That could prevent writer’s cramp if the polynomial is quite long. Also less writing means fewer chances for mistakes.
  • Instead of needing 9×2 lines to do long division for the problem, only three total lines are needed. That saves paper.
  • Using a instead of (x-a) or -a instead of (x+a) in the algorithm means we use addition instead of subtraction to find the quotient. Most people make fewer mistakes adding numbers than they do subtracting. Fewer mistakes means less frustration and less erasing.

Before we can do synthetic division we need to write some polynomials. Since this is my 828th post, I will write some polynomials based on the following chart, and they will be very special polynomials!

The numbers in bold print end in a zero because the corresponding base number is a factor of 828. For base 11 or greater, sometimes a digit is represented by a letter of the alphabet. The key to translating those letters to the corresponding number in base 10 is A = 10, B = 11, C = 12, D = 13, E = 14, F = 15, G = 16, H = 17, I = 18, J = 19, K = 20, L = 21, M = 22. This chart goes to BASE 28 because √828 ≈ 28.77.

We can write a polynomial for any of those bases using the digits given. The last digit for these special polynomials will be replaced with -828, but as you will see, that original last digit will not be forgotten.

Because 828 is 30330 in BASE 4, let’s use that information as our first example:

  • The digits 30330 make the polynomial 3x⁴ + 0x³ + 3x² + 3x -828.
  • The digits 3 0 3 3 -828 will be used as the coefficients in our synthetic division algorithm.
  • BASE 4 will be seen in the divisor (x – 4) and as “4” in the algorithm.

Now watch as this gif uses synthetic division to find the quotient.

 

828 Synthetic Division

make science GIFs like this at MakeaGif

The remainder is zero, and the last digit of 30330 is zero. From the remainder theorem we also know that 3(4⁴) + 3(4²) + 3(4) -828 = 0.

It turns out we can know what the remainder is for each of these special polynomials BEFORE we do any dividing! The remainder will be the last digit times negative one. That does not usually happen when we use synthetic division on a polynomial, but it will always happen on these special polynomials!

Here are a four more examples of writing one of these special polynomials and dividing it using synthetic division. Try writing the rest of the problems using some of the other bases and doing the division yourself, too.

Here are a few notes that wouldn’t fit in the table giving a logical solution to Find the Factors #828:

  1. Clue 27 will use a 3, so clue 9 cannot be 3×3. Thus, clues  9 and 18 will put 9 in the first column and 1 and 2 in the top row.
  2. Can both 40’s be 4×10? No, because that would use both 10’s, and make the 8 and the 18 use both 2’s. That would mean that clue 10 could not be 10×1 or 2×5.
  3. So 56 and one of the 40’s will use both 8’s. That means 24 has to use 4 and 6. Thus 24 and 42 will use both 6’s, so 30 will be 10×3.
  4. We know one of the 40’s is 4×10, but we don’t know which one. Nevertheless, we know that its 4 will be in the first column because its 10 cannot be. Since 24 must use 4 and 6, its 4 must be in the top row above the 24.

That was pretty complicated, so here’s where all the factors go, too. 🙂

 

 

Numbers up to 820 with Exactly 12 Factors

Let’s begin with today’s puzzle. Afterwards I’ll tell you a little about the number 820 and why I decided to make a list of all the numbers up to 820 with exactly 12 factors.

Print the puzzles or type the solution on this excel file: 12 factors 815-820

 

Now here’s some information about the number 820:

  • 820 is a composite number.
  • Prime factorization: 820 = 2 × 2 × 5 × 41, which can be written 820 = 2² × 5 × 41
  • The exponents in the prime factorization are 2, 1, and 1. Adding one to each and multiplying we get (2 + 1)(1 + 1)(1 + 1) = 3 x 2 x 2 = 12. Therefore 820 has exactly 12 factors.
  • Factors of 820: 1, 2, 4, 5, 10, 20, 41, 82, 164, 205, 410, 820
  • Factor pairs: 820 = 1 × 820, 2 × 410, 4 × 205, 5 × 164, 10 × 82, or 20 × 41
  • Taking the factor pair with the largest square number factor, we get √820 = (√4)(√205) = 2√205 ≈ 28.635642

820 is the sum of two squares two ways:

  • 28² + 6² = 820
  • 26² + 12² = 820

Because 5 and 41 are two of its prime factors, 820 is the hypotenuse of FOUR Pythagorean triples:

  • 180-800-820 which is 20 times 9-40-41
  • 336-748-820 which is 4 times 84-187-205, but it could also be calculated from 2(28)(6), 28² – 6², 28² + 6²
  • 492-656-820 which is 164 times 3-4-5
  • 532-624-820 which is 4 times 133-156-205, but it could also be calculated from 26² – 12², 2(26)(12),26² + 12²

Since 820 = (40×41)/2, we know that 820 is the 40th triangular number, thus

  • 1 + 2 + 3 + . . . + 38 + 39 + 40 = 820

820 is also a palindrome in four other bases:

  • 1010101 BASE 3 because 3⁶+3⁴+3²+3⁰=820
  • 1111 BASE 9 because 9³+9²+9¹+9⁰=820
  • 868 BASE 11 because 8(11²)+6(11¹)+8(11⁰)=820
  • 1I1 BASE 21 (I is 18 base 10) because 21²+18(21¹)+21⁰=820

Below is a chart of the numbers up to 820 with exactly 12 factors. Notice that two sets of consecutive numbers, (735, 736) and (819, 820), are on the list. Look at their prime factorizations:

  • 735=3×5×7², 736=2⁵×23
  • 819=3²×7×13, 820=2²×5×41

Those prime factorizations mean that while 735 and 736 are the smallest consecutive numbers with exactly 12 factors, 819 and 820 are the smallest consecutive numbers whose prime factorizations consist of one prime number squared and exactly two other primes. Thanks to Stetson.edu for alerting me to that fact. Here’s something interesting about the chart: of the 77 numbers listed, only six are odd numbers.

So, how did I know what numbers to put on the list?

In order to determine how many numbers up to 820 have exactly 12 factors, we must first factor 12. We know that 12=12, 6×2, 4×3, and 3×2×2.

Next we subtract 1 from each of those factors to determine the exponents we need to use:

12 gives us 12-1=11. For prime number a, when is a¹¹ not larger than 820? Never, because 2¹¹>820.

6×2 gives us 6-1=5 and 2-1=1. For prime numbers a and b, with a≠b, when is ab¹ less than or equal to 820? These nine times:

  • 2×3=96, 2×5=160, 2×7=224, 2×11=352,
  • 2×13=416, 2×17=544, 2×19=608, 2×23=736
  • 3×2=486

4×3 gives us 4-1=3 and 3-1=2. For prime numbers a and b, with a≠b, when is a³b² not larger than 820? These six times:

  • 2³×3²=72, 2³×5²=200, 2³×7²=392
  • 3³×2²=108, 3³×5²=675
  • 5³×2²=500

3×2×2 gives us 3-1=2, 2-1=1, and 2-1=1. For distinct prime numbers a, b, and c, when is a²bc not larger than 820? 52 times. Here’s the breakdown: It happens 35 times when 2²=4 is the square number:

And it happens another 27 times when a prime number other than 2 is squared:

 

That’s a lot of numbers with exactly 12 factors! After I sorted all the numbers that I found in numerical order, I was able to make that chart of numbers up to 820 with exactly 12 factors, and yes 819 and 820 are the smallest two consecutive numbers whose prime factorization consists exactly of one prime number squared and two other prime numbers.

Tag Cloud