1313 Virgács and St. Nickolas Day

6 December is Saint Nickolas Day. Children in Hungary and other places in Europe wake up to find candy and virgács in their boots. You can read more about this wonderful tradition in Jön a Mikulás (Santa is Coming) or Die Feier des Weihnachtsmanns (The Celebration of Santa Claus). Today’s puzzle represents the virgács given to children who have been even the least bit naughty during the current year.

Print the puzzles or type the solution in this excel file: 12 factors 1311-1319

Now I’ll write a little bit about the number 1313:

  • 1313 is a composite number.
  • Prime factorization: 1313 = 13 × 101
  • The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 × 2 = 4. Therefore 1313 has exactly 4 factors.
  • Factors of 1313: 1, 13, 101, 1313
  • Factor pairs: 1313 = 1 × 1313 or 13 × 101
  • 1313 has no square factors that allow its square root to be simplified. √1313 ≈ 36.23534

1313 is the sum of consecutive prime numbers three different ways:
It is the sum of the twenty-one prime numbers from 19 to 107.
It is the sum of eleven consecutive primes:
97 + 101 + 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 = 1313,
and it is the sum of seven consecutive prime numbers:
173 + 179 + 181 + 191 + 193 + 197 + 199 = 1313

1313 is the sum of two squares two different ways:
32² + 17² = 1313
28² +  23² = 1313

1313 is the hypotenuse of FOUR Pythagorean triples:
255-1288-1313 calculated from 28² –  23², 2(28)(23), 28² +  23²
260-1287-1313 which is 13 times (20-99-101)
505-1212-1313 which is (5-12-13) times 101
735-1088-1313 calculated from 32² – 17², 2(32)(17), 32² + 17²

Advertisements

1245 and Level 3

If you know the greatest common factor of 15 and 20, then you can begin to solve this puzzle. Since this is a level 3 puzzle, look at the clues starting at the top of the puzzle and work your way down, writing in the factors as you go. You can do this!

Print the puzzles or type the solution in this excel file: 10-factors-1242-1250

Now I’ll share some facts about the number 1245:

  • 1245 is a composite number.
  • Prime factorization: 1245 = 3 × 5 × 83
  • The exponents in the prime factorization are 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1) = 2 × 2 × 2 = 8. Therefore 1245 has exactly 8 factors.
  • Factors of 1245: 1, 3, 5, 15, 83, 249, 415, 1245
  • Factor pairs: 1245 = 1 × 1245, 3 × 415, 5 × 249, or 15 × 83
  • 1245 has no square factors that allow its square root to be simplified. √1245 ≈ 35.28456

1245 is also the hypotenuse of a Pythagorean triple:
747-996-1245 which is (3-4-5) times 249

1235 and Level 3

Do you know the greatest common factor of 28 and 35? If you do, then you can solve this puzzle by writing each number from 1 to 12 in both the first column and the top row. Since this is a level 3 puzzle, you can begin with the clues at the top of the puzzle and work your way down cell by cell. Good luck!

Print the puzzles or type the solution in this excel file: 12 factors 1232-1241

Now I’ll share some facts about the number 1235:

1235 is the hypotenuse of FOUR Pythagorean triples:
304-1197-1235 which is 19 times (16-63-65)
741-988-1235 which is (3-4-5) times 247
627-1064-1235 which is 19 times (33-56-65)
475-1140-1235 which is (5-12-13) times 95

1223 and Level 3

If you’ve been too anxious to try solving a level 3 puzzle in the past, you have no excuse for not trying this one. This might be the easiest level 3 puzzle I’ve ever published. Just write the factors for 40 and 48 in the proper cells, then work your way down the puzzle writing only numbers from 1 to 10 in the first column and the top row. Seriously, you can do this one!

Print the puzzles or type the solution in this excel file: 10-factors-1221-1231

Now I’ll write a little about the number 1223:

  • 1223 is a prime number.
  • Prime factorization: 1223 is prime.
  • The exponent of prime number 1223 is 1. Adding 1 to that exponent we get (1 + 1) = 2. Therefore 1223 has exactly 2 factors.
  • Factors of 1223: 1, 1223
  • Factor pairs: 1223 = 1 × 1223
  • 1223 has no square factors that allow its square root to be simplified. √1223 ≈ 34.97142

How do we know that 1223 is a prime number? If 1223 were not a prime number, then it would be divisible by at least one prime number less than or equal to √1223 ≈ 34.97. Since 1223 cannot be divided evenly by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 or 31, we know that 1223 is a prime number.

1223 is the sum of the twenty-one prime numbers from 17 to 103.

 

1213 and Level 3

This puzzle would be a lot tougher to solve if I didn’t put the clues in the order that I did. Just start at the top of the puzzle and work your way down the puzzle clue by clue until you get to the bottom of the puzzle and have the entire thing solved.

Print the puzzles or type the solution in this excel file: 12 factors 1211-1220

Now I’ll share a few facts about the number 1213:

  • 1213 is a prime number.
  • Prime factorization: 1213 is prime.
  • The exponent of prime number 1213 is 1. Adding 1 to that exponent we get (1 + 1) = 2. Therefore 1213 has exactly 2 factors.
  • Factors of 1213: 1, 1213
  • Factor pairs: 1213 = 1 × 1213
  • 1213 has no square factors that allow its square root to be simplified. √1213 ≈ 34.82815

How do we know that 1213 is a prime number? If 1213 were not a prime number, then it would be divisible by at least one prime number less than or equal to √1213 ≈ 34.8. Since 1213 cannot be divided evenly by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 or 31, we know that 1213 is a prime number.

1213 is the sum of the nine consecutive prime numbers:
109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 = 1213

27² + 22² = 1213
1213 is the hypotenuse of a Pythagorean triple:
245-1188-1213 calculated from 27² – 22², 2(27)(22), 27² + 22²

Here’s another way we know that 1213 is a prime number: Since its last two digits divided by 4 leave a remainder of 1, and 27² + 22² = 1213 with 27 and 22 having no common prime factors, 1213 will be prime unless it is divisible by a prime number Pythagorean triple hypotenuse less than or equal to √1213 ≈ 34.8. Since 1213 is not divisible by 5, 13, 17, or 29, we know that 1213 is a prime number.

 

1203 and Level 3

At the top of this level 3 puzzle are two clues that will tell you where to put three of the factors needed to solve the puzzle. After you find those three clues work down looking at the clues cell by cell until you have the entire puzzle solved.

Print the puzzles or type the solution in this excel file: 10-factors-1199-1210

Here are a few facts about the number 1203:

  • 1203 is a composite number.
  • Prime factorization: 1203 = 3 × 401
  • The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 × 2 = 4. Therefore 1203 has exactly 4 factors.
  • Factors of 1203: 1, 3, 401, 1203
  • Factor pairs: 1203 = 1 × 1203 or 3 × 401
  • 1203 has no square factors that allow its square root to be simplified. √1203 ≈ 34.68429

Since 1203 is only made from three consecutive numbers (1, 2, 3) and zeros, it has to be divisible by 3.

1203 is the hypotenuse of a Pythagorean triple:
120-1197-1203 which is 3(40-399-401)

1190 and Level 3

The common factors of 108 and 120 are 1, 2, 3, 4, 6, and 12, but pick the one that will only put numbers from 1 to 12 in the first column. Then work down that first column cell by cell writing in the factors of the clues as you go. Each number from 1 to 12 must go somewhere in both the first column and the top row.

Print the puzzles or type the solution in this excel file: 12 factors 1187-1198

Now I’ll share some information about the number 1190:

  • 1190 is a composite number.
  • Prime factorization: 1190 = 2 × 5 × 7 × 17
  • The exponents in the prime factorization are 1, 1, 1, and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1)(1 + 1)(1 + 1) = 2 × 2 × 2 × 2 = 110. Therefore 1190 has exactly 110 factors.
  • Factors of 1190: 1, 2, 5, 7, 10, 14, 17, 34, 35, 70, 85, 119, 170, 238, 595, 1190
  • Factor pairs: 1190 = 1 × 1190, 2 × 595, 5 × 238, 7 × 170, 10 × 119, 14 × 85, 17 × 70, or 34 × 35
  • 1190 has no square factors that allow its square root to be simplified. √1190 ≈ 34.49638

Because 1190 is the product of consecutive numbers 34 and 35, we know it is the sum of the first 34 EVEN numbers. Instead of writing all of those 34 numbers, we can use a some mathematical shorthand and simply write:
2 + 4 + 6 + 8 + . . . + 64 + 66 + 68 = 1190

1190 is the hypotenuse of FOUR Pythagorean triples:
182-1176-1190 which is 14 times (13-84-85)
504-1078-1190 which is 14 times (36-77-85)
560-1050-1190 which is (8-15-17) times 70
714-952-1190 which is (3-4-5) times 238

I like the way 1190 looks in some other bases:
It’s 707 in BASE 13 because 7(13²) + 7(1) = 7(169 + 1) = 7(170) = 1190,
545 in BASE 15,
2A2 in BASE 22,
1C1 in BASE 29 (C is 12 base 10),
and Y0 in BASE 35 (Y is 34 base 10) because 34(35) = 1190

1177 and Level 3

Why are two of the clues in today’s level three puzzle in red?

You still figure out the common factor of 32 and 72, then work down the first column cell by cell filling in factors as you go, BUT you won’t be able to know what factors to use for 9 unless you look at the number 15 first. You don’t have a problem with that, do you?

Print the puzzles or type the solution in this excel file: 10-factors-1174-1186

Now I’ll tell you some facts about the number 1177:

  • 1177 is a composite number.
  • Prime factorization: 1177 = 11 × 107
  • The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 × 2 = 4. Therefore 1177 has exactly 4 factors.
  • Factors of 1177: 1, 11, 107, 1177
  • Factor pairs: 1177 = 1 × 1177 or 11 × 107
  • 1177 has no square factors that allow its square root to be simplified. √1177 ≈ 34.30743

1177 is a palindrome in two bases:
It’s 414 in BASE 17 because 4(17²) + 1(17) + 4(1) = 1177
and 1E1 in BASE 28 (E is 14 base 10) because 28² + 14(28) + 1 = 1177

1165 and Level 3

Just because you start with the clues at the top of the puzzle and work down cell by cell to solve a level 3 puzzle doesn’t mean that you won’t have to do any thinking. Believe me, you will still have to THINK to solve this puzzle!

Print the puzzles or type the solution in this excel file: 12 factors 1161-1173

Now I’ll write a little bit about the number 1165:

  • 1165 is a composite number.
  • Prime factorization: 1165 = 5 × 233
  • The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 × 2 = 4. Therefore 1165 has exactly 4 factors.
  • Factors of 1165: 1, 5, 233, 1165
  • Factor pairs: 1165 = 1 × 1165 or 5 × 233
  • 1165 has no square factors that allow its square root to be simplified. √1165 ≈ 34.132096

34² + 3² = 1165
29² + 18² = 1165

1165 is the hypotenuse of FOUR Pythagorean triples:
204-1147-1165 calculated from 2(34)(3), 34² – 3², 34² + 3²
517-1044-1165 calculated from 29² – 18², 2(29)(18), 29² + 18²
525-1040-1165 which is 5 times (105-208-233)
699-932-1165 which is (3-4-5) times 233

1151 and Level 3

If you know the common prime factor for 27 and 30, then you can at least start this puzzle. If you work down the first column cell by cell using logic, you should be able to solve the puzzle, too. Good luck!

Print the puzzles or type the solution in this excel file: 10-factors-1148-1160

Here are some facts about the number 1151:

  • 1151 is a prime number.
  • Prime factorization: 1151 is prime.
  • The exponent of prime number 1151 is 1. Adding 1 to that exponent we get (1 + 1) = 2. Therefore 1151 has exactly 2 factors.
  • Factors of 1151: 1, 1151
  • Factor pairs: 1151 = 1 × 1151
  • 1151 has no square factors that allow its square root to be simplified. √1151 ≈ 33.92639

How do we know that 1151 is a prime number? If 1151 were not a prime number, then it would be divisible by at least one prime number less than or equal to √1151 ≈ 33.9. Since 1151 cannot be divided evenly by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 or 31, we know that 1151 is a prime number.

1151 is the sum of consecutive primes three different ways:
It is the sum of the twenty-three prime numbers from 7 to 101.
223 + 227 + 229 + 233 + 239 = 1151 and
379 + 383 + 389 = 1151

Stetson.edu states that 1151 is the smallest number that is the sum of consecutive prime numbers four different ways, I think they must be considering 1151 = 1151 to be one of those ways.

1151 is palindrome 1L1 in BASE 25 (L is 21 base 10)
because 25² + 21(25) + 1 = 1151