## A Multiplication Based Logic Puzzle

### 808 Happy Birthday, Justin!

Happy birthday to my good friend, Justin! He seems to always remember the birthdays of everyone he knows, so this is how I am remembering his special day today. Justin is highly intelligent, thoughtful, and very friendly. I am confident he can solve this Level 6 puzzle that looks a little like a birthday cake.

Print the puzzles or type the solution on this excel file: 10-factors 807-814

This is my 808th post so I thought I would also make a factor cake for the number 808. It’s prime factor, 101, is at the top of the cake. Justin, I hope you live to be 101!

808 is a palindrome. That means it looks the same forwards and backwards. It is also a strobogrammatic number. That means it looks the same right side up or upside down.

ALL of the factors of 808 are also palindromes, and four of them are strobogrammatic numbers, too. Can you figure out which ones are both?

• 808 is a composite number.
• Prime factorization: 808 = 2 x 2 x 2 x 101, which can be written 808 = (2^3) x 101
• The exponents in the prime factorization are 3 and 1. Adding one to each and multiplying we get (3 + 1)(1 + 1) = 4 x 2 = 8. Therefore 808 has exactly 8 factors.
• Factors of 808: 1, 2, 4, 8, 101, 202, 404, 808
• Factor pairs: 808 = 1 x 808, 2 x 404, 4 x 202, or 8 x 101
• Taking the factor pair with the largest square number factor, we get √808 = (√4)(√202) = 2√202 ≈ 28.425340807

Here are the factors that make puzzle #808 act like a multiplication table. It is followed by a table of logical steps to arrive at that solution.

### 807 and Level 1

What can I say about the number 807?

807 is palindrome 151 in BASE 26 because 1(26²) + 5(26) + 1(1) = 807.

Anything else? Well, I can figure out a few other things because 807’s has two prime factors, 3 and 269:

We can write ANY number (unless it’s a power of 2) as the sum of consecutive numbers in at least one way. 807 has three different ways to do that:

• 403 + 404 = 807 because 807 isn’t divisible by 2.
• 268 + 269 + 270 = 807 because it is divisible by 3.
• 132 + 133 + 134 + 135 + 136 + 137 = 807 since it is divisible by 3 but not by 6.

I know that one of 807’s factors, 269, is a hypotenuse of a Pythagorean triple, so 807 is also. Thus. . .

• (3·69)² + (3·260)² = (3·269)², or in other words, 207² + 780² = 807²

Since 807 has two odd sets of factor pairs, I know that 807 can be written as the difference of two squares two different ways:

• 136² – 133² = 807
• 404² – 403² = 807

I don’t usually do this, but today’s puzzle has something in common with 807. Can you tell what it is?

Print the puzzles or type the solution on this excel file: 10-factors 807-814

• 807 is a composite number.
• Prime factorization: 807 = 3 x 269
• The exponents in the prime factorization are 1 and 1. Adding one to each and multiplying we get (1 + 1)(1 + 1) = 2 x 2 = 4. Therefore 807 has exactly 4 factors.
• Factors of 807: 1, 3, 269, 807
• Factor pairs: 807 = 1 x 807 or 3 x 269
• 807 has no square factors that allow its square root to be simplified. √807 ≈ 28.4077454